Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 102: 274-286, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908784

RESUMO

PURPOSE: Chemotherapy-related cognitive impairment (CRCI) is commonly reported following the administration of chemotherapeutic agents and comprises a wide variety of neurological problems. No effective treatments for CRCI are currently available. Here we examined the mechanisms involving cisplatin-induced hippocampal damage following cisplatin administration in a rat model and in cultured rat hippocampal neurons and neural stem/progenitor cells (NSCs). We also assessed the protective effects of the antioxidant, N-acetylcysteine in mitigating these damages. EXPERIMENTAL DESIGN: Adult male rats received 6mg/kg cisplatin in the acute studies. In chronic studies, rats received 5mg/kg cisplatin or saline injections once per week for 4 weeks. N-acetylcysteine (250mg/kg/day) or saline was administered for five consecutive days during cisplatin treatment. Cognitive testing was performed 5 weeks after treatment cessation. Cisplatin-treated cultured hippocampal neurons and NSCs were examined for changes in mitochondrial function, oxidative stress production, caspase-9 activation, and neuronal dendritic spine density. RESULTS: Acute cisplatin treatment reduced dendritic branching and spine density, and induced mitochondrial degradation. Rats receiving the chronic cisplatin regimen showed impaired performance in contextual fear conditioning, context object discrimination, and novel object recognition tasks compared to controls. Cisplatin induced mitochondrial DNA damage, impaired respiratory activity, increased oxidative stress, and activated caspase-9 in cultured hippocampal neurons and NSCs. N-acetylcysteine treatment prevented free radical production, ameliorated apoptotic cellular death and dendritic spine loss, and partially reversed the cisplatin-induced cognitive impairments. CONCLUSIONS: Our results suggest that mitochondrial dysfunction and increased oxidative stress are involved in cisplatin-induced cognitive impairments. Therapeutic agents, such as N-acetylcysteine, may be effective in mitigating the deleterious effects of cisplatin.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/genética , Animais , Antineoplásicos/administração & dosagem , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Cisplatino/administração & dosagem , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/patologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
2.
Brain Behav Immun ; 44: 159-66, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25451612

RESUMO

Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus.


Assuntos
Encefalite/fisiopatologia , Hipocampo/fisiopatologia , Lipopolissacarídeos/administração & dosagem , Rememoração Mental/fisiologia , Memória Espacial/fisiologia , Animais , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Encefalite/induzido quimicamente , Hipocampo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Rememoração Mental/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Memória Espacial/efeitos dos fármacos
3.
Learn Mem ; 22(1): 1-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25512571

RESUMO

No studies to date have examined whether immediate-early gene (IEG) activation is driven by context memory recall. To address this question, we utilized the context preexposure facilitation effect (CPFE) paradigm. In CPFE, animals acquire contextual fear conditioning through hippocampus-dependent rapid retrieval of a previously formed contextual representation. Despite differences in behavior, we did not find any difference in CA1 or CA3 IEG activity associated with this rapid recall phase when comparing context preexposed and non-pre-exposed groups. These findings indicate that IEG activation in CA1 and CA3 is not an accurate readout of the neural activity associated with hippocampus-dependent rapid memory retrieval.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Genes Precoces/fisiologia , Memória/fisiologia , Ativação Transcricional/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Eletrochoque , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Masculino , Ratos Sprague-Dawley
4.
J Neurosci ; 34(37): 12470-80, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25209285

RESUMO

Although it is known that immune system activation can impair cognition, no study to date has linked cognitive deficits during acute neuroinflammation to dysregulation of task-relevant neuronal ensemble activity. Here, we assessed both neural circuit activity and context discrimination memory retrieval, in a within-subjects design, of male rats given systemic administration of saline or lipopolysaccharide (LPS). Rats were exposed over several days to two similar contexts: one of which was paired with weak foot shock and the other was not. After reaching criteria for discriminative freezing, rats were given systemic LPS or saline injection and tested for retrieval of context discrimination 6 h later. Importantly, LPS administration produced an acute neuroinflammatory response in dorsal hippocampus at this time (as assessed by elevation of proinflammatory cytokine mRNA levels) and abolished retrieval of the previously acquired discrimination. The impact of neuroinflammation on hippocampal CA3 and CA1 neural circuit activity was assessed using the Arc/Homer1a cellular analysis of temporal activity by fluorescence in situ hybridization imaging method. Whereas the saline-treated subjects discriminated and had low overlap of hippocampal ensembles activated in the two contexts, LPS-treated subjects did not discriminate and had greater ensemble overlap (i.e., reduced orthogonalization). Additionally, retrieval of standard contextual fear conditioning, which does not require context discrimination, was not affected by pretesting LPS administration. Together, the behavioral and circuit analyses data provide compelling evidence that LPS administration impairs context discrimination memory by disrupting cellular pattern separation processes within the hippocampus, thus linking acute neuroinflammation to disruption of specific neural circuit functions and cognitive impairment.


Assuntos
Cognição , Citocinas/imunologia , Aprendizagem por Discriminação , Encefalite/imunologia , Hipocampo/imunologia , Transtornos da Memória/imunologia , Memória , Doença Aguda , Animais , Encefalite/induzido quimicamente , Lipopolissacarídeos , Masculino , Transtornos da Memória/induzido quimicamente , Reconhecimento Fisiológico de Modelo , Ratos , Ratos Sprague-Dawley
5.
Neurobiol Learn Mem ; 116: 79-89, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225165

RESUMO

The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal-associated (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine-context memory and suggest the involvement of an NMDA receptor-dependent Arc induction pathway in drug-cue memory interference.


Assuntos
Encéfalo/metabolismo , Cocaína/farmacologia , Proteínas do Citoesqueleto/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Sinais (Psicologia) , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Memantina/farmacologia , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
6.
Neurobiol Learn Mem ; 97(3): 313-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22390855

RESUMO

Past studies have proposed a role for the hippocampus in the rapid encoding of context memories. Despite this, there is little data regarding the molecular processes underlying the stable formation of a context representation that occurs in the time window established through such behavioral studies. One task that is useful for investigating the rapid encoding of context is contextual fear conditioning (CFC). Behavioral studies demonstrate that animals require approximately 30 s of exploration prior to a footshock to form a contextual representation supporting CFC. Thus, any potential molecular process required for the stabilization of the cellular representation for context must be activated within this narrow and behaviorally defined time window. Detection of the immediate-early gene Arc presents an ideal method to assess the activation of specific neuronal ensembles, given past studies showing the context specific expression of Arc in CA3 and CA1 subfields and the role of Arc in hippocampal long-term synaptic plasticity. Therefore, we examined the temporal dynamics of Arc induction within the hippocampus after brief context exposure to determine whether experience-dependent Arc expression could be involved in the rapid encoding of incidental context memories. We found that the duration of context exposure differentially activated Arc expression in hippocampal subfields, with CA3 showing rapid engagement within as little as 3 s of exposure. By contrast, Arc induction in CA1 required 30 s of context exposure to reach maximal levels. A parallel behavioral experiment revealed that 30 s, but not 3 s, exposure to a context resulted in strong conditioned freezing 24 h later, consistent with past studies from other laboratories. The current study is the first to examine the rapid temporal dynamics of Arc induction in hippocampus in a well-defined context memory paradigm. These studies demonstrate within 30 s of context exposure Arc is fully activated in CA3 and CA1, suggesting that the engagement of plastic processes requiring Arc function (such as long-term potentiation) occurs within the same temporal domain as that required for behavioral conditioning.


Assuntos
Condicionamento Psicológico/fisiologia , Proteínas do Citoesqueleto/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Expressão Gênica , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
Neurobiol Learn Mem ; 97(1): 124-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100445

RESUMO

The rodent hippocampus is well known for its role in spatial navigation and memory, and recent evidence points to the retrosplenial cortex (RSC) as another element of a higher order spatial and mnemonic circuit. However, the functional interplay between hippocampus and RSC during spatial navigation remains poorly understood. To investigate this interaction, we examined cell activity in the RSC during spatial navigation in the water maze before and after acute hippocampal inactivation using expression of two immediate-early genes (IEGs), Arc and Homer 1a (H1a). Adult male rats were trained in a spatial water maze task for 4 days. On day 5, the rats received two testing/training sessions separated by 20 min. Eight minutes before the second session, different groups of rats received bilateral intrahippocampal infusion of tetrodotoxin (TTX), muscimol (MUS), or vehicle. Another group of rats (uni-TTX) received infusion of TTX in one hippocampus and vehicle in the other. Signals from Arc and H1a RNA probes correspond to the post- and pre-infusion sessions, respectively. Bilateral TTX and MUS impaired spatial memory, as expected, and decreased Arc expression in CA1 of hippocampus. Importantly, bilateral inactivation of hippocampus resulted in loss of behavior-induced Arc expression in RSC. Despite a lateralized effect in CA1, Arc expression was equivalently and bilaterally decreased in RSC of uni-TTX rats, consistent with a network level interaction between hippocampus and RSC. We conclude that the loss of hippocampal input alters activity of RSC neurons and compromises their ability to engage plastic processes dependent on IEG expression.


Assuntos
Córtex Cerebral/metabolismo , Proteínas do Citoesqueleto/genética , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/genética , Animais , Córtex Cerebral/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Muscimol/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia , Tetrodotoxina/farmacologia
8.
J Neurosci ; 29(4): 898-906, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19176799

RESUMO

The hippocampus is hypothesized to support rapid encoding of ongoing experience. A critical prerequisite for such function is the ability to readily recruit enduring synaptic plasticity in hippocampal neurons. Hippocampal long-term potentiation (LTP) and memory consolidation require expression of the immediate-early gene (IEG) Arc. To determine whether Arc transcription could be driven by limited and controlled behavioral experience, we used a rectangular track paradigm. In past electrophysiological studies, pyramidal neurons recorded from rats running in one direction on similar tracks typically exhibited a single firing field. Using fluorescence in situ hybridization, we show that the behavioral activity associated with a single lap around the track was sufficient to trigger Arc transcription in complete CA3 neuronal ensembles, as predicted given the role of CA3 in one-trial learning. In contrast, Arc transcription in CA1 ensembles was recruited incrementally, with maximal activation achieved after four laps a day for 4 consecutive days. To test whether Arc transcription is linked to learning and plasticity, or merely elicited by location-specific firing, we inactivated the medial septum, a treatment that compromises hippocampus-dependent learning and LTP but spares location-specific firing in CA1 neurons. Septal inactivation abolished track training-induced Arc transcription in CA1 and CA3 neurons, showing that Arc transcription requires plasticity-inducing stimuli. Accordingly, LTP induction activated Arc transcription in CA1 neurons in vivo. These findings demonstrate for the first time that a single brief experience, equivalent to a single crossing of a firing field, can trigger IEG expression required for long-term plasticity in the hippocampus.


Assuntos
Hipocampo/citologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Transcrição Gênica/fisiologia , Anestésicos Locais/farmacologia , Animais , Comportamento Animal , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/fisiologia , Locomoção/fisiologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Tetracaína/farmacologia
9.
J Neurosci ; 28(46): 11760-7, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19005037

RESUMO

In a manner unique among activity-regulated immediate early genes (IEGs), mRNA encoded by Arc (also known as Arg3.1) undergoes rapid transport to dendrites and local synaptic translation. Despite this intrinsic appeal, relatively little is known about the neuronal and behavioral functions of Arc or its molecular mechanisms of action. Here, we attempt to distill recent advances on Arc spanning its transcriptional and translational regulation, the functions of the Arc protein in multiple forms of neuronal plasticity [long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity], and its broader role in neural networks of behaving animals. Worley and colleagues have shown that Arc interacts with endophilin and dynamin, creating a postsynaptic trafficking endosome that selectively modifies the expression of AMPA-type glutamate receptors at the excitatory synapses. Both LTD and homeostatic plasticity in the hippocampus are critically dependent on Arc-mediated endocytosis of AMPA receptors. LTD evoked by activation of metabotropic glutamate receptors depends on rapid Arc translation controlled by elongation factor 2. Bramham and colleagues have shown that sustained translation of newly induced Arc mRNA is necessary for cofilin phosphorylation and stable expansion of the F-actin cytoskeleton underlying LTP consolidation in the dentate gyrus of live rats. In addition to regulating F-actin, Arc synthesis maintains the activity of key translation factors during LTP consolidation. This process of Arc-dependent consolidation is activated by the secretory neurotrophin, BDNF. Moore and colleagues have shown that Arc mRNA is a natural target for nonsense-mediated mRNA decay (NMD) by virtue of its two conserved 3'-UTR introns. NMD and other related translation-dependent mRNA decay mechanisms may serve as critical brakes on protein expression that contribute to the fine spatial-temporal control of Arc synthesis. In studies in behaving rats, Guzowski and colleagues have shown that location-specific firing of CA3 and CA1 hippocampal neurons in the presence of theta rhythm provides the necessary stimuli for activation of Arc transcription. The impact of Arc transcription in memory processes may depend on the specific context of coexpressed IEGs, in addition to posttranscriptional regulation of Arc by neuromodulatory inputs from the amygdala and other brain regions. In sum, Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to diverse forms of synaptic plasticity, thereby optimizing information storage in active networks.


Assuntos
Encéfalo/metabolismo , Proteínas do Citoesqueleto/genética , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Sinapses/genética , Sinapses/metabolismo , Animais , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/metabolismo , Humanos , Proteínas do Tecido Nervoso/biossíntese , Estabilidade de RNA/genética , Transmissão Sináptica/genética , Transcrição Gênica/genética
11.
Neurobiol Learn Mem ; 89(3): 269-84, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17931913

RESUMO

Investigations into the mechanisms of memory formation have abided by the central tenet of the consolidation theory-that memory formation occurs in stages which differ in their requirement for protein synthesis. The current most widely accepted hypothesis posits that new memories are encoded as neural activity-induced changes in synaptic efficacy, and stabilization of these changes requires de novo protein synthesis. However, the basic assumptions of this view have been challenged by concerns regarding the specificity of the effects of the protein synthesis inhibitors used to support the claim. Studies on immediate-early genes (IEGs), in particular Arc, provide a distinct and independent perspective on the issue of the requirement of new protein synthesis in synaptic plasticity and memory consolidation. The IEG Arc and its protein are dynamically induced in response to neuronal activity, and are directly involved in synaptic plasticity and memory consolidation. Although we provide extensive data on Arc's properties to address the requirement of genomic and proteomic responses in memory formation, Arc is merely one element in a network of genes that interact in a coordinated fashion to serve memory consolidation. From gene expression and other studies, we propose the view that the stabilization of a memory trace is a continuous and ongoing process, which does not have a discrete endpoint and cannot be reduced to a single deterministic "molecular cascade". Rather, memory traces are maintained within metastable networks, which must integrate and update past traces with new ones. Such an updating process may well recruit and use many of the plasticity mechanisms necessary for the initial encoding of memory.


Assuntos
Redes Reguladoras de Genes/genética , Memória/fisiologia , Rede Nervosa/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Genes Precoces/genética , Hipocampo/fisiologia , Humanos , Aprendizagem , Plasticidade Neuronal/fisiologia , RNA Mensageiro/genética , Fatores de Transcrição/genética
12.
Learn Mem ; 14(11): 758-70, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18007019

RESUMO

Different functions have been suggested for the hippocampus and its subdivisions along both transversal and longitudinal axes. Expression of immediate-early genes (IEGs) has been used to map specific functions onto neuronal activity in different areas of the brain including the hippocampus (IEG imaging). Here we review IEG studies on hippocampal functional dissociations with a particular focus on the CA3 subregion. We first discuss the cellular functions of IEGs and the brain system interactions that govern their dynamic expression in hippocampal neurons to provide a more solid framework for interpreting the findings from IEG studies. We show the pitfalls and shortcomings of conventional IEG imaging studies and describe advanced methods using IEGs for imaging of neuronal activity or functional intervention. We review the current IEG evidence of hippocampal function, subregional-specific contribution to different stages of memory formation, systems consolidation, functional dissociation between memory and anxiety/behavioral inhibition along the septotemporal axis, and different neural network properties of hippocampal subregions. In total, IEG studies provide support for (1) the role of the hippocampus in spatial and contextual learning and memory, (2) its role in continuous encoding of ongoing experience, (3) septotemporal dissociations between memory and anxiety, and (4) a dynamic relationship between pattern separation and pattern completion in the CA3 subregion. In closing, we provide a framework for how cutting-edge IEG imaging and intervention techniques will likely contribute to better understanding of the specific functions of CA3 and other hippocampal subregions.


Assuntos
Mapeamento Encefálico , Genes Precoces/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/genética , Animais , Hipocampo/anatomia & histologia , Humanos
13.
Cytometry A ; 71(9): 724-36, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17654650

RESUMO

Automated segmentation and morphometry of fluorescently labeled cell nuclei in batches of 3D confocal stacks is essential for quantitative studies. Model-based segmentation algorithms are attractive due to their robustness. Previous methods incorporated a single nuclear model. This is a limitation for tissues containing multiple cell types with different nuclear features. Improved segmentation for such tissues requires algorithms that permit multiple models to be used simultaneously. This requires a tight integration of classification and segmentation algorithms. Two or more nuclear models are constructed semiautomatically from user-provided training examples. Starting with an initial over-segmentation produced by a gradient-weighted watershed algorithm, a hierarchical fragment merging tree rooted at each object is built. Linear discriminant analysis is used to classify each candidate using multiple object models. On the basis of the selected class, a Bayesian score is computed. Fragment merging decisions are made by comparing the score with that of other candidates, and the scores of constituent fragments of each candidate. The overall segmentation accuracy was 93.7% and classification accuracy was 93.5%, respectively, on a diverse collection of images drawn from five different regions of the rat brain. The multi-model method was found to achieve high accuracy on nuclear segmentation and classification by correctly resolving ambiguities in clustered regions containing heterogeneous cell populations.


Assuntos
Núcleo Celular/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Animais , Encéfalo/ultraestrutura , Ratos
14.
Learn Mem ; 14(6): 433-45, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17562895

RESUMO

Stimulation paradigms that induce perforant path long-term potentiation (LTP) initiate phosphorylation of ERK1/2 and induce expression of a variety of immediate early genes (IEGs). These events are thought to be critical components of the mechanism for establishing the changes in synaptic efficacy that endure for hours or longer. Here we show that in mice, perforant path LTP can be induced using a standard protocol (repeated trains at 250 Hz), without accompanying increases in immunostaining for p-ERK1/2 or increased in expression of representative IEGs (Arc and c-fos). Signaling pathways capable of inducing ERK phosphorylation and IEG transcription are intact in mice because ERK phosphorylation differs strikingly in awake versus anesthetized mice, and IEG expression is strongly induced by electroconvulsive seizures. In pursuing the reasons for the lack of induction with LTP, we found that in rats, one of the stimulation paradigms used to induce perforant path LTP (trains at 250 Hz) also does not activate MAP kinase or induce IEG expression, despite the fact that the LTP induced by 250 Hz stimulation requires NMDA receptor activation and persists for hours. These findings indicate that there are different forms of perforant path LTP, one of which does not require MAP kinase activation or IEG induction. Moreover, these data demonstrate that different LTP induction paradigms do not have identical molecular consequences, which may account for certain discrepancies between previous studies.


Assuntos
Regulação da Expressão Gênica , Genes Precoces , Potenciação de Longa Duração/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Via Perfurante/fisiologia , Actinas/metabolismo , Animais , Butadienos/farmacologia , Dendritos/metabolismo , Giro Denteado/citologia , Giro Denteado/enzimologia , Estimulação Elétrica/métodos , Eletrochoque , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas/farmacologia , Via Perfurante/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/etiologia , Convulsões/genética , Especificidade da Espécie , Fatores de Tempo , Ativação Transcricional
15.
Science ; 316(5823): 457-60, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17446403

RESUMO

Competition between neurons is necessary for refining neural circuits during development and may be important for selecting the neurons that participate in encoding memories in the adult brain. To examine neuronal competition during memory formation, we conducted experiments with mice in which we manipulated the function of CREB (adenosine 3',5'-monophosphate response element-binding protein) in subsets of neurons. Changes in CREB function influenced the probability that individual lateral amygdala neurons were recruited into a fear memory trace. Our results suggest a competitive model underlying memory formation, in which eligible neurons are selected to participate in amemorytrace as a function of their relative CREB activity at the time of learning.


Assuntos
Tonsila do Cerebelo/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Memória/fisiologia , Neurônios/fisiologia , Animais , Condicionamento Psicológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Medo , Vetores Genéticos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Transcrição Gênica
16.
Hippocampus ; 17(3): 227-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17286278

RESUMO

We demonstrated previously that when hippocampal-dependent learning and plasticity are compromised by fornix lesions, behaviorally induced expression of the immediate early gene, Arc, is correspondingly low. The medial septum and the vertical diagonal band are major sources of subcortical afferents that innervate the hippocampus via the fornix. Here we assessed the specific contribution of cholinergic afferents from these regions to the impairments in spatial learning and behavioral induction of Arc transcription produced by fornix lesions. The immunotoxin, 192 IgG-saporin, was used to produce selective lesions of cholinergic cell bodies in the medial septum and vertical diagonal band. Rats were then trained on both cued and spatial delayed match-to-place tasks in a radial arm water maze. Animals with 192 IgG-saporin lesions learned both cue and place discrimination tasks in the water maze normally, and showed only a mild and transient impairment when switching from the cued to the spatial version of the task. Following behavioral testing, rats explored two novel environments sequentially in a setting known to induce Arc expression in hippocampal pyramidal neurons. In marked contrast to the effects of complete fornix transection, quantitative in situ autoradiography revealed no differences in Arc mRNA expression between sham and lesion animals in CA1, CA3 or stratum radiatum. The conclusion from these data is that cholinergic deafferentation alone cannot account for the spatial learning deficits or impaired behavioral induction of Arc transcription produced by fornix lesions.


Assuntos
Fibras Colinérgicas/metabolismo , Proteínas do Citoesqueleto/genética , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/genética , Núcleos Septais/metabolismo , Acetilcolina/metabolismo , Animais , Anticorpos Monoclonais , Sinais (Psicologia) , Denervação , Aprendizagem por Discriminação , Fórnice/metabolismo , Fórnice/fisiopatologia , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , N-Glicosil Hidrolases , Células Piramidais/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Núcleos Septais/fisiopatologia
17.
J Neurosci Methods ; 160(1): 144-8, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17049619

RESUMO

Simultaneous imaging of multiple cellular components is of tremendous importance in the study of complex biological systems, but the inability to use probes with similar emission spectra and the time consuming nature of collecting images on a confocal microscope are prohibitive. Hyperspectral imaging technology, originally developed for remote sensing applications, has been adapted to measure multiple genes in complex biological tissues. A spectral imaging microscope was used to acquire overlapping fluorescence emissions from specific mRNAs in brain tissue by scanning the samples using a single fluorescence excitation wavelength. The underlying component spectra obtained from the samples are then separated into their respective spectral signatures using multivariate analyses, enabling the simultaneous quantitative measurement of multiple genes either at regional or cellular levels.


Assuntos
Encéfalo/metabolismo , Citometria por Imagem , Microscopia de Fluorescência por Excitação Multifotônica , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Animais , Masculino , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley
18.
J Neurosci ; 26(30): 7826-38, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16870728

RESUMO

Intracellular vesicular trafficking and membrane fusion are important processes for nervous system development and for the function of neural circuits. Synaptosomal-associated protein 25 kDa (SNAP-25) is a component of neural soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complexes that mediate the exocytotic release of neurotransmitters at chemical synapses. Previous results from mouse mutant models and pharmacological/neurotoxin blockades have demonstrated a critical role for SNAP-25-containing SNARE complexes in action potential (AP)-dependent release at cholinergic and glutamatergic synapses and for calcium-triggered catecholamine release from chromaffin cells. To examine whether SNAP-25 participates in the evoked release of other neurotransmitters, we investigated the expression and function of SNAP-25 in GABAergic terminals. Patch-clamp recordings in fetal Snap25-null mutant cortex demonstrated that ablation of SNAP-25 eliminated evoked GABA(A) receptor-mediated postsynaptic responses while leaving a low level of spontaneous AP-independent events intact, supporting the involvement of SNAP-25 in the regulated synaptic transmission of early developing GABAergic neurons. In hippocampal cell cultures of wild-type mice, punctate staining of SNAP-25 colocalized with both GABAergic and glutamatergic synaptic markers, whereas stimulus-evoked vesicular recycling was abolished at terminals of both transmitter phenotypes in Snap25-/- neurons. Moreover, immunohistochemistry and fluorescence in situ hybridization revealed coexpression of SNAP-25, VGAT (vesicular GABA transporter), and GAD65/67 (glutamic acid decarboxylase 65/67) in interneurons within several regions of the adult brain. Our results thus provide evidence that SNAP-25 is critical for evoked GABA release during development and is expressed in the presynaptic terminals of mature GABAergic neurons, consistent with its function as a component of a fundamental core SNARE complex required for stimulus-driven neurotransmission.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/embriologia , Hipocampo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Exocitose/fisiologia , Camundongos , Camundongos Knockout , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética
19.
J Comp Neurol ; 498(3): 317-29, 2006 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16871537

RESUMO

Active behavior, such as exploring a novel environment, induces the expression of the immediate-early gene Arc (activity-regulated cytoskeletal associated protein, or Arg 3.1) in many brain regions, including the hippocampus, neocortex, and striatum. Arc messenger ribonucleic acid and protein are localized in activated dendrites, and Arc protein is required for the maintenance of long-term potentiation and memory consolidation. Although previous evidence suggests that Arc is expressed in neurons, there is no direct demonstration that only neurons can express Arc. Furthermore, there is no characterization of the main neuronal types that express Arc. The data reported here show that behavior- or seizure-induced Arc expression in the hippocampus, primary somatosensory cortex, and dorsal striatum of rats colocalizes only with neuronal (NeuN-positive) and not with glial (GFAP-positive) cells. Furthermore, Arc was found exclusively in non-GABAergic alpha-CaMKII-positive hippocampal and neocortical neurons of rats that had explored a novel environment. Some GAD65/67-positive neurons in these regions were observed to express Arc, but only after a very strong stimulus (electroconvulsive seizure). In the dorsal striatum, spatial exploration induced Arc only in GABAergic and alpha-CaMKII-positive neurons. Combined, these results show that although a very strong stimulus (seizure) can induce Arc in a variety of neurons, behavior induces Arc in the CaMKII-positive principal neurons of the hippocampus, neocortex, and dorsal striatum. These results, coupled with recent in vitro findings of interactions between Arc and CaMKII, are consistent with the hypothesis that Arc and CaMKII act as plasticity partners to promote functional and/or structural synaptic modifications that accompany learning.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Comportamento Exploratório/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Prosencéfalo/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Genes Precoces/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Aprendizagem/fisiologia , Masculino , Proteínas do Tecido Nervoso/genética , Inibição Neural/fisiologia , Neurônios/citologia , Proteínas Nucleares/metabolismo , Prosencéfalo/citologia , Ratos , Ratos Endogâmicos F344 , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Percepção Espacial/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
20.
Proc Natl Acad Sci U S A ; 103(4): 1077-82, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16415163

RESUMO

The ability of neurons to alter their transcriptional programs in response to synaptic input is of fundamental importance to the neuroplastic mechanisms underlying learning and memory. Because of technical limitations of conventional gene detection methods, the current view of activity-dependent neural transcription derives from experiments in which neurons are assumed quiescent until a signaling stimulus is given. The present study was designed to move beyond this static model by examining how earlier episodes of neural activity influence transcription of the immediate-early gene Arc. Using a sensitive FISH method that detects primary transcript at genomic alleles, the proportion of hippocampal CA1 neurons that activate transcription of Arc RNA was constant at approximately 40% in response to both a single novel exploration session and daily sessions repeated over 9 days. This proportion is similar to the percentage of active neurons defined electrophysiologically. However, this close correspondence was disrupted in rats exposed briefly, but repeatedly, to the same environment within a single day. Arc transcription in CA1 neurons declined dramatically after as few as four 5-min sessions, despite stable electrophysiological activity during all sessions. Additional experiments indicate that the decrement in Arc transcription occurred at the cellular, rather than synaptic level, and was not simply linked to habituation to novelty. Thus, the neural genomic response is governed by recent, but not remote, cell firing history in the behaving animal. This state-dependence of neuronal transcriptional coupling provides a mechanism of metaplasticity and may regulate capacity for synaptic modification in neural networks.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Transcrição Gênica , Alelos , Animais , Eletrofisiologia , Genes Precoces , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Masculino , Memória , Microscopia Confocal , Modelos Genéticos , Modelos Estatísticos , Atividade Motora , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Sistema Nervoso Periférico/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes de Fusão/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...